But the reality is that not all UX research methods are created equal. Without a firm understanding of testing biases and a healthy dose of observational research, your user tests might unintentionally serve up skewed results—and end up leading the UX of your product astray.
For example, we recently tested a product where users struggled to complete a task—let’s say it was entering scores from a quiz. In attempting to complete the task, our test users clicked all over the screen and ran into plenty of speed-bumps that were clearly difficult to navigate. However, at the end of the process, they all rated the product highly, saying that it had been easy to use. Had we relied on self-reporting alone, we never would have identified the pretty serious workflow issues that still needed to be ironed out.
To understand exactly why the structure of user tests is so important (and why we so strongly recommend observational research), you first need to have an understanding of biases as they relate to UX research methods.
All people are naturally biased. That’s no surprise; a quick scroll through the news feed on your favorite social media app will likely bear this statement out. But in the context of user testing, biases are much subtler than things like political preferences and religious affiliations. In fact, the biases that impact user testing are so subtle that the people involved likely won’t perceive them at all.
Users are often eager to please, eager to seem smart, and quickly forget when things have gone wrong if they achieve a goal. If we as testers aren’t careful, these very pleasant tendencies can give way to misleading biases. The following three biases are especially important to understand since they often cause users to unwittingly change their behavior in a testing environment.
It would be impossible to eliminate all the biases that might come into play in a testing environment. Still, having an awareness of the existence of the most common biases—and how best to counteract them—goes a long way toward reducing the problem.
By now it should be pretty clear that you don’t want to make UX decisions based on verbatim and self-reporting alone. But hindsight bias isn’t the only reason to prioritize observational studies as part of your UX research methodology.
We want our products to fit into the lives of our users. People won’t change their behavior to use your product, and there’s a lot more that goes into someone’s day than their strict interaction with your software. You need to understand how your product fits into users’ lives by watching them in action.
We can’t know how users live their lives unless we observe them, ideally in their own environments and contexts. For example, if your product is used to help manage coursework and assignments, then you need to have an understanding of how and when it’s being used by instructors and students. Only by observing your product in action might you learn that instructors typically assign coursework while looking at an on-screen calendar, meaning that your product’s screen needs to be responsive enough to work alongside another app. Careful observation allows variables like this one to become known entities that your product can then accommodate.
In-person, in-context observation is the gold standard for user testing. But, of course, there are a number of reasons why it’s not always feasible, from budgeting to timing and logistics. The good news is that a lot can be learned by simply observing users click through prototypes in remote moderated sessions. And this is all the more true when you have an understanding of how to coach testers in a way that reduces bias.
EdTech companies face a number of pressures when it comes to developing and releasing new products, and it can be tempting to save time by minimizing user research. But not knowing enough about users is the biggest danger that many EdTEch companies face. If you short-change observational UX research, you are guaranteed to design a product that is less responsive to users’ needs and therefore less successful—and you may not even know why. So, when it comes to user testing, measure twice and cut once. Do that, and your stakeholders and users will thank you.